Junction Conditions / Discontinuities in Solutions
- Darmois G: Les Équations de la Gravitation Einsteinienne
(Chapitre V), Mémorial de Sciences Mathématiques,
Fascicule XXV, (Paris: Gauthier-Villars, 1927)
- Lichnerowicz A: Théories Relativistes de la
Gravitation et de l`Electromagnétisme, (Paris: Masson, 1955)
- Dautcourt G: ..., Math. Nachr. 27 (1964), 277
- Israel W: Singular Hypersurfaces and Thin Shells in General
Relativity, Nuovo Cimento B 44 (1966), 1
NB: No discussion of relation to Cauchy initial value
problem. First occurrence of the "Codazzi" mis-spelling error.
- Papapetrou A, A Hamoui: Couches Simples de Matière en
Relativité Générale, Ann. Inst. Henri
Poincaré 9 (1968), 179
- Taub A H: Space-Times with Distribution Valued Curvature
Tensors, J. Math. Phys. 21 (1980), 1423
NB: Finite jumps in
the first and second partial derivatives of the metric across a
3-surface. Provides a formalism in which the second Bianchi
identities are satisfied in the sense of distributions.
- Clarke C J S, T Dray: Junction Conditions for Null
Hypersurfaces, Class. Quantum Grav. 4 (1987),
265
NB: Finite jumps
in the first and second partial derivatives of the metric across a
3-surface. No discussion of relation to Cauchy initial value
problem.
- Lake K: Some Notes on the Propagation of Discontinuities in
Solutions to the Einstein Equations, Vth Brazilian School of
Cosmology and Gravitation, Ed. M Novello, (Singapore: World
Scientific, 1987), 1
- Barrabès C: Singular Hypersurfaces in General Relativity:
a Unified Description, Class. Quantum Grav. 6
(1989), 581
NB: (- + + +). Finite jumps in the first and second
partial derivatives of the metric across a 3-surface. No discussion
of relation to Cauchy initial value problem.
- Fayos F et al: Matching Of The Vaidya And Robertson-Walker
Metric, Class. Quantum Grav. 8 (1991), 2057
NB: Vaidya spacetime: analogue of LTB model with null dust
("pure radiation").
- Mars M, J M M Senovilla: Geometry of General Hypersurfaces in
Spacetime: Junction Conditions, Class. Quantum Grav.
10 (1993), 1865
- Friedrich H, G Nagy: The Initial Boundary Value Problem for
Einstein's Vacuum Field Equation, Commun. Math. Phys.
201 (1999), 619
NB: Very technical. (+ - - -). Communicated by H Nicolai.
- van Elst H, G F R Ellis, B G Schmidt: On the Propagation
of Jump Discontinuities in Relativistic Cosmology, Preprint
gr-qc/0007003,
uct-cosmology-00/06, AEI-2000-039
Selected References
Last revision: Tue, 22-8-2000 (This page is under construction)